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The theory of thermodynamic plasma fluctuations is now fairly
well developed [1-3]. However, in practice, one often comes across
plasma states which are very far from being in equilibrium, Flucua-
tions in such nonequilibrium states have been investigated by a series
of authors [4-9] in terms of a linear approximation.

It must, however, be noted that, under specific conditions, ne-
glect of nonlinear effects may turn out to be unjustified, This relates
particularly to plasma states which are close to being unstable. In this
region the fluctuations of various physical quantities are very large. A
similar situation occurs, for example, in the experimentally observed
“"critical opalescence” in plasma, i.e., the anomalously strong scat-
tering of electromagnetic waves by an unstable plasma [10]. The de-
pendence of the transport coefficient on ion-sound oscillations at a
fairly large ratio of electron and ion temperatures [11] is another
example illustrating the insufficiency of the linear approximation,
Finally, nonlinear effects may be significant in a plasma with highly
developed turbulence.

All this points to the necessity of expressing the various correlation
functions characteristic of fluctuation processes in terms of higher cor-
relation functions. In doing so, it is natural to confine oneself, for a
start, to the first approximation in order of nonlinearity,

The present paper solves this problem for plasma with Coulomb
interaction.

1. As is well known [12], the state of a two-com~
ponent plasma with Coulomb interaction can be de~
scribed by the phase density

No(r, , )= 6(r —ria ()8 (b — Pia 8)

satisfying the equation
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Here

Ua (r, ?»)=i,eb—(1—e‘“), A>0 (1.1Y

is the modified Coulomb interaction, going over in-
to Coulomb interaction for A — = . The introduction
of interaction (1.1) is a generally accepted formal
device, used in order to exclude the strictly ener-
getic divergences which arise in the description

of a system of particles with Coulomb interaction
[13]. The Fourier transform of (1.1) differs from
that of the Coulomb interaction by the factor

A2/ k? o+ 7\2), which ensures the convergence of
integrals in k-space, and the significance of the
above-mentioned procedure lies in the fact that

the passage to the A— * has already been realized
in the end results. However, one can see that the
operator lim (A? / k% + 7\2) for A — < is equivalent to
replacing the improper integrals in k-space associ-

ated with Coulomb interaction with integrals in the
sense of a principal value.

This latter procedure is obviousiy more conven-
ient, since it allows us to dispense with the addition-
al factor.

We represent the phase density in the form of two
components

Ng = <1Va> + &Nu.

the first of which represents the phase density aver-
age taken over the ensemble, while the second de-
scribes the fluctuations about the mean. By defini-
tion, (6Na) =0.

Everywhere in what follows we shall consider
that the plasma as a whole is neutral and that its
states are those of quasi-equilibrium. The latter
condition tacitly assumes that space-time vari-
ations of the mean phase density values are slow
in comparison with the corresponding fluctuation
scales.

It can be shown that 6 N ,satisfies the equations

b, 86N,
B, TV T T
3Ny AU () -
— e Sy R e (w1 =
b

au
= S\ {drdp 2 L (30w — < 8Qu )
b

§Quw = 8N, (r, p, £) 6N, (v', p’, 8). (1.2)

Finally, one can establish the following relations
{12], which will be required later on:

(Nod = fafa, {1.3)
(8N (r, p, ) 8Ny (x', ¢/, 1)) =
=08a8 (r — 1) 8 (p— p) mfy +
+ Ratoas (r, T, Py P (1.4)
(BNq (r, p, 1) ON, (r', p’, £) 8N, (r", 9", 1)) =
=00l (r — )8 (r — 1) 6 (p—p) 8 (p~ p) nfe +
+ 88 (r — 1) 8 (p — P') NaPegac +
T 8ad (r - 1) 8 (p — P') nergre +
+ 8B (1" — )8 (P — P) mamBar + nemuneduer  (1.5)
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Here n, is the number of particles of type @ in
unit volume, and g p, and d;,, are double and triple
correlation functions respectively.

2. Fluctuation processes in a plasma are given
by the double correlation function

BN, (r, p, £) N, (', p', ). (2.1)

When this is calculated in the framework of the
linear theory, the triple simultaneous correlation
function is neglected, as a result of which the right-
hand side of the system of equations (1.2) is also
neglected. The system then turns out to be self-
consistent, which ensures the solution of the pro-
blem. In the first approximation in order of non-
linearity the correlation function (1.5) is preserved,
and correspondingly the right-hand side of (1.2) is
also retained. As a result, it becomes necessary to
supplement the system of equations (1.2) for 0Q,.
However, leavingthis question open until a later
stage, we shall formally take the right-hand side in
system (1.2) to be given and solve the initial prob-
lem with the initial condition

8N, (r, p, t = 0) =8N, (r, p, 0).

To do this we apply the unilateral time Fourier
transform and the coordinate Fourier transform

8N. (k, p, ©) = § dt§ dr 6N, (r, p, 1) etosionsn
Q
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Straightforward calculations give
GNa (l‘, P, t) = 6Na (l‘ — vi, p, 0) -
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and A, (k, p, w) is the Fourier transform of

U
or

Ao (1,0, 1) = I\ ardp S - (60w —<8Qud). (2:4)

b

Muiltiplying (2.2) by 0Ny, (r’, p’, 0) and averaging
the result over the ensemble, we find without dif-
ficulty :

1
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Here Gy, in the Fourier transform of the pair
correlation function

’ dk ’ ik )
ga (¥, P, P') = STZ::—)a Ga (k, p, p) e'*.

The first term in (2.5) coincides with the result
of linear theory [6] (on condition that for the pair
correlation function we use the ''linear'' pair cor-
relation function). Both the last and the first term
contain nonlinearity, since instead of Ggp We must
now use the "nonlinear" pair correlation function.

If we turn out attention to the structure of the
correction term in (2.5), it becomes obvious that
the second term in (2.4) does not contribute to
the double correlation function. Taking only the
first term into account, we have

4mie, 9

! k’ ? ’
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where
Qo (5 K, 9, 0) =3 &\ dp'80u (k, K, p, B, 0). (2.8)
5 ,
It is convenient to represent relation (2.5) in a

slightly different form. Multiplying (2.5) on the
left by the operator

Z € g dp
ol fa)
we find without difficulty
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(8p6N (P"))x,wito,r =
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We shall see later that the dependence of ¥}, on

r’/ is a spurious one. With the help of relations (2. 10)

- (2.12) it is not hard to represent (2.5) in the form

CBNa (1, p, ) 8N, (1, p, 0 = { G2 itetmr=e ¢
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where
Yoo (K, 0 420, p, P, ¥) = ™ (k, © + 0, p, ') +
+ xub(g)(kv ® + 101 p, p'! l") ’ (214)
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[8006 (p — ') mufs +

4+ nauGe (k, p, P, (2.15)
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g (%)

XK 2 (Qa (k= K, K, p, 0) 8N (', p', 0. (2.16)

It should be noted that the form of the relation
between the correlation function {O0NON) and
(6p6N) is of the same form as in the linear the-
ory [61.

3. Relations (2.9) and (2.13) are still only a
formal solution of the problem posed, since the
function 6Qgy, is as yet unspecified. Thus it is
necessary to construct a system of equations
determining 6Q,),. Multiplying the equation for
0N, by &Ny, and the equation for 6Ny, by 6N, and
adding the results, we find

lab o, 9\
i (VY ) 80 —

. of
= 2\ drdp” e = g 0 e i
¢

- 8l ,, 3 )
= 2 drdpr [ 2 S (BRase—<8Que> 8Ne) +

o, &
b S e (BRue — (80se> V)| (3.1)

where

SRupe = BNBNLN, .

System (3.1) allows one to express 6Q,p, by
means of a pair distribution function, the fluc-
tuation of phase density, and a triple simul-
taneous correlation function. However, if we

limit ourselves to taking into account the first
corrections in order of nonlinearity, then the
right-hand side of (3.1) can be neglected, which auto-
matically closes the problem.

We shall seek the solution of the initial problem
for system (3.1) without right-hand side by the Fou-
rier method. Thus,
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as a result of which we arrive at the equations
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We note that 6Qgy is symmetric with respect to
the substitution of a, k, p respectively by b, k1 p,
and vice versa. In solving (3 2) we shall follow the
method outlined in [14, 15]. We introduce

0,k kK, p,0) =Ye (dp8Q,, (& K, p, p, 0).
>,

Multiplying (3.2) by €, summing over b and inte~
grating over p’, we find

efo —kv+:0,k)Q, (kk,p o=

b

® - i0 — kv — Kk'v

8m2i a
— Tk %M K,k o — kv +i0,0)., (3.3)
where
’ ’ i e Qa (kr kr* b, O’)
M (& K, 0, 0) == Sea \dp ~1o
21

Now multiplying (3.3) by e,d(w ' w +kv), sum-
ming over gand integrating over p, we obtain

s +0, k) IMkk, 0 —o —i0, o) —

— Mk Kk, 0 —o + U, 0)l= (3.4}
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i6Qg (k, K, p, 1, 0)

’
P (0 — o —kv) —

= Siea {dp Slew {ap’

— M &, ko +i0,0) X
Xlelw—o —i0, k) —¢e (0 —o +i0, k).

Making the substitutions k' and w’ — 0’ — w'
in Eq. (3.4), and subtracting the equation thus ob-
tained from (3.4) itself, we have

e +i0,k)Mkk,0 —o'. —i0,0) +
+e(w—0 —i0, k) xME, k o + i0, 0)—

L« . BQy (K, p P, 0 gdp
Tt 2% Sdp ;(m'-—k’v’—f—iO)(m—m'— kv —i0) =
a

—e(@ —i0,K) M kK, o —ao' +i0, o) +
+ & @—0 +i0, hx MK, k o —i0, 0)—

_ i, ¢ . i6Q, &k, k', p, ', 0) dp’
fﬁZeaS dp Zeb S(m'—k'v'—iO)(m—m’-—kv+i0)' (3.5)
a s

Considering (3.5) as the bounding relation for a
certain function of the complex variable w’, which
vanishes for || — % we conclude, by a well-known
theorem from the theory of analytic functions, that

e, k)MEk k', 0o —o',0) +
+e@—0, kMK, k o, 0)=

1 ,  BQ., kK, pp,0)
_z—mZeanp %“ebgdp Ty - (36)

Relation /3.6) allows one to eliminate the quan-
tity M (k,k, w — w?, w),from (3.4), as a result of
which we find

MK, ko —i0,0) M,k o +i0o)
e(w —i0, k") (0 +i0,k)

- . L1 1
= jea yap ?ebsdp B
a

. 6Qab (k, klv p: P', 0)
g (0 — o 4 i0, k) x

1 1
X [a (@ —i0,K) (@ — kv —i0) Te(w +i0,K)(@ —kv - iO)J'

Whence we obtain, from the Sokhotskii-Plemel
formulas,
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(3.4)
(cont'd)

Setting (3.7) in (3.3), we have
0,k K,p 0)= Zeb X
b
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Formula (3.8) also gives the explicit expression
for the function entering into the required double.
correlation functions (2.9)-(2.11).

4. Setting (3.8) in (2.16), representing 0Qg, (k, k',
p, p!, 0) by the Fourier integral in coordinate space,
using (1.5) and then passing once again to the k-re-
presentation, we find after calculation

Ap® (&, @ + 0, p, p', ) =

e

= %a® (& @ 40, p, P') = — 505
e, ;@
i 3o
4
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where Ak = k — k'and

R 1 8 1 (0
n(m,k,m,k,v):efnamgﬁm(k 35) (4.2)

Nae (&, k', p, p', p') =
= 8048 (p — ) 6 (P — P') nefe + 88 (p — P') X
X naneGac (K, Py P’) + 848 (p — P') neeGoy (— K, P, P) +
+ 85 (P — ) X mnGan k" — Kk, p, p') +

+ nnnbncDabc (k7 - kla —k + k,1 P, p’v P”) (43)

dape = TZif'T S dk dk’ei[(k+k')r—k’r’fkr"] X
X Dge (k, k', —k — K/, p, p', p'). 4.4)

It still remains to calculate ¥4q. To do this we
employ the obvious relationship

— 1 . 92
¥ =; (@ + 10, k)‘E €a &dl’xab“’
a

as a result of which we obtain
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where

M, ko' k) = e, (dpm, @, k o', K, v)

is the function introduced in 115]).

The relations (2.9)-(2.11) and (4.5) determine, in
the first approximation in order of nonlinearity, the
double correlation function of charge density with
phase density through the first distribution function,
and pair and triple correlation functions. Moreover,
in order to preserve the order of smallness, the
correlation functions substituted in (2.11) should
correspond to the first approximation in order of
nonlinearity, so that, just as in relation (4.5),we

must confine ourselves to linear correlation functions.

The analogous relations (2.13)-(2.15) and (4.1)
together with the Fourier transform (2.10), deter-
mined above, represent the double phase density
correlator in terms of correlation functions, and
are thus, in fact, the solution of the problem posed,
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